a2 United States Patent

Mykland

US009158544B2

US 9,158,544 B2
Oct. 13, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(76)

")

@
(22)

(65)

(63)

(60)

(1)

(52)

(58)

SYSTEM AND METHOD FOR PERFORMING
A BRANCH OBJECT CONVERSION TO
PROGRAM CONFIGURABLE LOGIC
CIRCUITRY

Inventor: Robert Keith Mykland, Capitola, CA
(US)
Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 517 days.

Appl. No.: 13/493,962

Filed: Jun. 11, 2012
Prior Publication Data
US 2013/0145134 Al Jun. 6, 2013

Related U.S. Application Data

Continuation-in-part of application No. 13/301,763,
filed on Nov. 21, 2011, and a continuation-in-part of
application No. 13/360,805, filed on Jan. 30, 2012,
now Pat. No. 8,856,768, and a continuation-in-part of
application No. 13/429,198, filed on Mar. 23, 2012,
now Pat. No. 8,869,123.

Provisional application No. 61/500,619, filed on Jun.
24,2011.

Int. Cl1.

GO6F 9/50 (2006.01)

GO6F 9/30 (2006.01)

GO6F 9/38 (2006.01)

GO6F 9/45 (2006.01)

U.S. CL

CPC GO6F 9/30181 (2013.01); GOGF 8/40
(2013.01); GOGF 8/452 (2013.01); GOG6F 9/38

(2013.01)
Field of Classification Search
None
See application file for complete search history.

N = START ADDRESS
OF SEQUENCE

(56) References Cited

U.S. PATENT DOCUMENTS

5,317,743 A 5/1994 Imai et al.
5,488,707 A 1/1996 Phillips et al.
5,822,591 A 10/1998 Hochmuth
5,950,009 A 9/1999 Bortnikov et al.
5,974,538 A 10/1999 Wilmot, 1T
6,438,737 Bl 8/2002 Morelli et al.
6,717,436 B2 4/2004 Kress et al.
6,832,370 B1 12/2004 Srinivasan et al.
6,868,017 B2 3/2005 Tkeda
6,988,183 Bl 1/2006 Wong
7,076,575 B2 7/2006 Baitinger et al.
(Continued)
OTHER PUBLICATIONS

U.S. Appl. No. 13/301,763, filed Nov. 21, 2011, Robert Mykland.

Primary Examiner — Don Wong
Assistant Examiner — Shirin Alizadeh
(74) Attorney, Agent, or Firm — Patrick Reilly

(57) ABSTRACT

A method and system are provided for deriving a resultant
software code from an originating ordered list of instructions
that does not include overlapping branch logic. The method
may include deriving a plurality of unordered software con-
structs from a sequence of processor instructions; associating
software constructs in accordance with an original logic of the
sequence of processor instructions; determining and resolv-
ing memory precedence conflicts within the associated plu-
rality of software constructs; resolving forward branch logic
structures into conditional logic constructs; resolving back
branch logic structures into loop logic constructs; and/or
applying the plurality of unordered software constructs in a
programming operation by a parallel execution logic cir-
cuitry. The resultant plurality of unordered software con-
structs may be converted into programming reconfigurable
logic, computers or processors, and also by means of a com-
puter network or an electronics communications network.

20 Claims, 10 Drawing Sheets

INSTRUCTION N
FORWARD BRANCH
9

DETERMINF.

INSTRUCTION

TARGET

CENLRATE & ASSOCIATL:
CONDITION CONSTRUCT

INSTRUCTION N =
BACK BRANCE,

DETERMINE
TARGET
INSTRUCTION

gl GENERATE & ASSOCIATE
LOOP CONSTRUCT

GENERATE &
ASSOCIATE

CONSTRUCT

US 9,158,544 B2

Page 2
(56) References Cited 2004/0107331 Al 6/2004 Baxter
2006/0004997 Al* 1/2006 Myklandc.ccoccoccoecrc.. 712/244
U.S. PATENT DOCUMENTS 2006/0242385 Al* 10/2006 Murakami et al. .. 712/200
2007/0198971 Al* 8/2007 Dasuetal. ..o, 717/140
7,155,602 B2 12/2006 Poznanovic 2008/0005498 Al 1/2008 Lujan Moreno et al.
- 2008/0189703 Al* 8/2008 Imetal. .ocoooorocroorecrin. 718/100
3’1?3’223 g% %88; g‘;ﬁiﬁgﬁ 2009/0119654 Al 52009 Kawahito et al.
7840777 B2 112010 Mykland 2009/0240928 Al 9/2009 Fischer et al.
7.840.950 B2 11/2010 Stoodley et al 20110113411 AL = 5/2011 Yonezu
820, . : 2012/0096444 Al* 4/2012 Wrightetal. 717/137
8,078,849 B2 12/2011 Libby etal. 2012/0331450 Al 122012 Mykland
2004/0019765 Al 1/2004 Klein, Jr.
2004/0068329 Al 4/2004 Mykland * cited by examiner

US 9,158,544 B2

Sheet 1 of 10

Oct. 13, 2015

U.S. Patent

T 3ANODId

TISTT
adadaaao

NDO-10°D ALI'TVAN'Id

£AS
HAITdINOD

'S
SASdO

47 AJOWIIN WHLSAS
47T A1NAON
LNdNI
DT AIVAAALNI
MHMOMLAN

K 4

Mmoo

Vo= w

A OB mye &

a7 ' 1NAdOoNn
LOdNI

L LINOHID
LADUVL

VT A1NAdON
JOSSIO0dd

TUALAINOD

US 9,158,544 B2

Sheet 2 of 10

Oct. 13, 2015

U.S. Patent

¢ HANDIA

g9 LANYHLNI

L LINDYUID LdDIVL

\

I IINONID
1IDYVL T d4LNdNOD

8 YHAYAS
qasvavivd
9 YALNdNOD
FIGVINOIINODTY
A 4
L LINDEID
1ADYVL A > TYALNINOD
9 YALNdNOD
AT19VINDIANODTY
Vi MOMLAN 4/
ANOHJITAL

¥ A-HOMLIN SNOLLVOINNNINOD

US 9,158,544 B2

Sheet 3 of 10

Oct. 13, 2015

U.S. Patent

£ ANDIA

6667 NOLLONY.LSNI

rgdax

(1A 66EY NOLLONY.LSNI

\

[RRSD:¢

\

00€¥ NOLLONY.LSNI

6617 NOLLO1YLSNI |«

'ddX HONVYd
AOVE AAVAINAXHE LSl \

114X

(IX00TY NOLLDIULSNI =

\

-

000% NOLLOY.LSNI

'ddX HONVYE

Hddx

AdvMdOod
AV TdINGXH LSdId

US 9,158,544 B2

Sheet 4 of 10

Oct. 13, 2015

U.S. Patent

¥ 301

LIOMALSNOD
HIVIDOSSY
B AIVIANAD

p | onmusxoodoor | [NOTRISND oy Sove
AIVIDOSSY % AIVIANID I TNYE 14
Ty Ty
LOMALSNOD NOLLIGNOD |, | NI e e
AIVIDOSSY % HIVIANTD /
/ mzzﬁﬁ = N NOLLDMYISNI
oLy 80t 90
¢
SSHIAAV LSV L+N=N
aNg=N JONANOES 40
SSHUAAYV LUVIS =N
9T A
JaYaqdo 109714S
Py
(41574

US 9,158,544 B2

Sheet 5 of 10

Oct. 13, 2015

U.S. Patent

S JINDIA

s

L LINOYID
LADYVL
HSIOUAXH

3

'S

L 1IND™ID
LHDYVL
HANDOIINOD

/L

|

8
MO 9 v ‘TIWAISAS
OL ¥ IOMILAN
VIA LIWNSNVYIL

80°¢

/

5

90°S

vy d41S
WOYd4 ddED0dd

)

v

0'¢

0y dd1s
OL dddD50dd

/

s

US 9,158,544 B2

Sheet 6 of 10

Oct. 13, 2015

U.S. Patent

9 TANO

o

HAOD UNIHOVIN
A4 TIdNOD
HLNADEAXA

N

|

019

HAOD ENIHOVIA
AIVIINID

N

t

8
d0 9 v “TIWALSAS
OL ¥ MMOMIAN
VIA LINSNVIL

809

IS

1

90°9

Y1 ddLS
WOYd d4300dd

I

/
%

09

0y d4LS
OL dgdD0dd

/
09

US 9,158,544 B2

Sheet 7 of 10

Oct. 13, 2015

U.S. Patent

L HANOIA

PO°L

SLOA40 DNILIOdS
% LodIdo
dJOOTHLVIDOSSY
¥ AIVIINGD

SLOHIGO DNILIOddNS L
% LDArdO NOILLIONOD
HIVIOOSSY
¥ AIVIENED

2
HONVUY
AAVAIOL

SINHWDHES
NIVHD NOILIANOD |,
AASNA AOYLSHd

NOLLD{TYLSNI
HONVYdd
LXHN ANIJ

0L

US 9,158,544 B2

Sheet 8 of 10

Oct. 13, 2015

U.S. Patent

8 HUNDIA

NIVHD NOILIAONOD |

11VINdOd % W04

I

N

NIVHO NOTLIAONOD

/M dOOTTVNYHLNI
HOVA HIVIDALINI

s

RN

|

4R

NIVHD NOILLIANOD
/M NOLLVIHdO
AJOWHW TVNIHLNI

HOVHd H1IVIDA.LNL

IS

918

NIVHD NOILLIONOD
/M NOILIVYEdO
AHDAVIHIH
TVNIELNI
HOVA HIVIDALNI

818

SATIVRIVA
AOd SLOFfdO
YASOOHD W04

RN

.

01’8

SLOArdO 4d0DdO
2INIT H19N0d

H

N

SLOArd0
H4d00dO ddNMO

80'8

IS

40 LSI'T HIVHED

i

90°8

HdAL LOAHO
NOILIAINOD
SV ALONHd

/

)

¥0'8

INHWHIVLS
JIDOTASIHAHE

'8

US 9,158,544 B2

Sheet 9 of 10

Oct. 13, 2015

U.S. Patent

6 TANDIA

10440 LNdNI
dOOTOL SLOAfdO
L1OdNI TVLILINI
SINDT 2 WHOA

v

LOHIHO L4100
d007T OL SLO4dfd0
LNdI1NO TVNIA
2INIT % W04

e

I

6

dTdVIIVA HOVH
JO4 LOAfHO
FTdVIIVA Wd04

avav

v

9’6

SHNTVA
IINVATA/TVILINI
HLIM (S)1Ddrdo
ATIVIIVA
JIVINdOd

81°6

PINTTHT19N0d

:

N

0r'6

SLOH{d0 4a0Dd0
TVNYHLNI 40 LSI'T
AH9Hdd0 W04

[

06

1odrdo 114100
dOOTdIVIDOSSY
¥ IWHO4

/
.

LOArd0O LNdNI
d00T4dLVIDOSSY
¥ N0

t

HdAL LOdfd0
dOOT SV 4LONHd

/
¥0'6
T~

<06

US 9,158,544 B2

Sheet 10 of 10

Oct. 13, 2015

U.S. Patent

01 TINOII

[sx] i3] [f105] [vmo] oo]
[#9] [r100 [[erro [[corof
[0] [wo] [e100] [ero] [zroro]
[0] [ws] [ro5] [vmws] [rors |
[~ows]fsws] [N [53] [0][]
[omoffaws] [er3] [e3] [so00 | fer3]
[rows jfawo [[ers] [edf [eooo [[wof
[rows jwo [[vro] [19] [0 | [wdf

N'DO-10°D SLOOYLSNOD 40 ALT'TVIN'Id

CA\S
YA TIdINOD

47 AJOIWHIN
WALSAS

US 9,158,544 B2

1
SYSTEM AND METHOD FOR PERFORMING
A BRANCH OBJECT CONVERSION TO
PROGRAM CONFIGURABLE LOGIC
CIRCUITRY

CO-PENDING PATENT APPLICATIONS

This Nonprovisional patent application is a Continuation-
in-Part application to Provisional Patent Application Ser. No.
61/500,619, filed on Jun. 24, 2011 by inventor Robert Myk-
land. Provisional Patent Application Ser. No. 61/500,619 is
hereby incorporated by reference in its entirety and for all
purposes, to include claiming benefit of the priority date of
filing of Provisional Patent Application Ser. No. 61/500,619.

This Nonprovisional patent application is also a Continu-
ation-in-Part application to Nonprovisional patent applica-
tion Ser. No. 13/301,763, filed on Nov. 21, 2011 by inventor
Robert Mykland and titled “CONFIGURABLE CIRCUIT
ARRAY”. Nonprovisional patent application Ser. No.
13/301,763 is hereby incorporated by reference in its entirety
and for all purposes, to include claiming benefit of the priority
date of filing of Nonprovisional patent application Ser. No.
13/301,763.

This Nonprovisional patent application is additionally a
Continuation-in-Part application to Nonprovisional patent
application Ser. No. 13/360,805, filed on Jan. 30, 2012 by
inventor Robert Mykland and titled “SYSTEM AND
METHOD FOR COMPILING MACHINE-EXECUTABLE
CODE GENERATED FROM A SEQUENTIALLY
ORDERED PLURALITY OF PROCESSOR INSTRUC-
TIONS”. Nonprovisional patent application Ser. No. 13/360,
805 is hereby incorporated by reference in its entirety and for
all purposes, to include claiming benefit of the priority date of
filing of Nonprovisional patent application Ser. No. 13/360,
805.

Further more, this Nonprovisional patent application is a
Continuation-in-Part application to Nonprovisional patent
application Ser. No. 13/429,198, filed on Mar. 23, 2012 by
inventor Robert Mykland and titled “SYSTEM AND
METHOD FOR APPLYING A SEQUENCE OF OPERA-
TIONS CODE TO PROGRAM CONFIGURABLE LOGIC
CIRCUITRY”. Nonprovisional patent application Ser. No.
13/429,198 is hereby incorporated by reference in its entirety
and for all purposes, to include claiming benefit of the priority
date of filing of Nonprovisional patent application Ser. No.
13/429,198.

FIELD OF THE INVENTION

The present invention relates to software, data processing
and information technology. More particularly, the present
invention relates to methods of and systems for modifying
software code for application with electronic logic capable of
reconfigurable, configurable, programmable, reprogram-
mable and/or parallel processing of logical operations

BACKGROUND OF THE INVENTION

The prior art provides software programs that consist of
sequences of machine-executable commands that are orga-
nized as ordered lists of instructions that may be executed by
aconventional, general purpose computer and that may allow
for and include logical branching. However the use of soft-
ware designed to be sequentially executed line-line by one or
more central processor or arithmetic logic units may not allow
for a more efficient operation possible by the special class of

20

40

45

50

2

computational devices that may be configured, programmed
and/or executed at least partly with parallel logic processing
techniques.

There is therefore a long-felt need to provide methods and
systems that enable a conversion of an originating software
program into a resultant software program that (a.) supports
the operation, configuration, reconfiguration, programming
and/or reprogramming made possible by computational
devices having parallel processing capability; and/or (b.) gen-
erates non-sequentially ordered software encoded constructs
that may be used to form digital logic circuits.

SUMMARY AND OBJECTS OF THE
INVENTION

It is an object of the method of the present invention (here-
inafter “invented method”) to provide a method and a system
that enable the conversion of an originating software program
into a resultant software program, wherein the resultant soft-
ware program may be applied by a logic circuit that is capable
of'performing parallel computation and/or to form or describe
the connectivity pathways of digital logic circuits.

Towards these objects and other objects that will be made
obvious in light of this disclosure, a first version of the
invented method provides a method and a system that modi-
fies a plurality of software encoded instructions to generate a
resultant unordered plurality of software encoded constructs
(hereinafter, “software constructs™) that may be executed by
logic circuitry that is at least partially enabled to execute
instructions in parallel. In one optional aspect of the invented
method, one or more machine-executable instructions, e.g.,
opcodes, may be modeled by one or more software con-
structs, e.g. software objects.

It is understood that the scope of definition of the term
“software construct” of the present disclosure includes a soft-
ware encoded or software coded logical statement or instruc-
tion that may include (a.) an instruction such as an opcode, a
command, machine-executable instruction, and/or a null
instruction, e.g., or an instruction to not perform an operation,
e.g. a no-op opcode; (b.) a datum or data; (c.) a variable; (d.)
references to additional commands, data and variables; and/
or other or additional opcode, mathematical expression or
logic algorithm that may be expressed or represented in soft-
ware in a form that is executable by a computer or from which
a machine-executable instruction can be derived, determined
or compiled.

In one aspect of the method of the present invention, a
source program comprising an ordered list of software-en-
coded instructions that do not instantiate overlapping branch
logic, e.g., a sequence of processor-executable opcodes that
do not include any instances of overlapping branch logic, is
converted into a functionally equivalent unordered plurality
of software constructs. Data dependencies of the source pro-
gram execution flow may be modeled within the unordered
plurality of software constructs by associations of individual
constructs or groups of software constructs. Memory depen-
dencies may also be modeled within the unordered plurality
of software constructs by associations of individual con-
structs or groups of constructs.

In an additional optional aspect of the invented method, a
computational system having parallel processing logic cir-
cuitry and/or reconfigurable logic, and/or an information
technology network that comprises parallel processing logic
circuitry and/or reconfigurable logic, and is adapted to accept
and execute the resultant unordered plurality of software con-
structs, wherein the resultant unordered plurality of software

US 9,158,544 B2

3

constructs are at least partially derived in accordance with one
or more of the recited aspects of the invented method.

In certain still alternate preferred embodiments of the
invented method, some or all of an array of reconfigurable
logic circuits are communicatively or bi-directionally com-
municatively coupled to a memory, a back buffer, and one or
more memory controllers.

In certain even additional aspects of the invented method,
condition chains structures are built to combine all conditions
that affect a predicated operation of a construct into a single
condition equation, and thereby transform execution depen-
dency logic into data dependency logic.

Additionally or alternately, the invented method provides
or is employable by a reprogrammable logic unit as disclosed
in U.S. Pat. No. 7,840,777 issued on Nov. 23, 2010 to inventor
Robert Mykland and titled “Method and apparatus for direct-
ing a computational array to execute a plurality of successive
computational array instructions at runtime” and a method of
programming thereof.

Still additionally or alternately, the invented method pro-
vides a reprogrammable logic unit as disclosed in U.S. Non-
provisional patent application Ser. No. 13/301,763 filed on
Now. 21, 2011 to inventor Robert Mykland and titled “CON-
FIGURABLE CIRCUIT ARRAY” and a method of program-
ming thereof.

INCORPORATION BY REFERENCE

All publications mentioned herein are incorporated herein
by reference to disclose and describe the methods and/or
materials in connection with which the publications are cited.
All publications, patents, and patent applications mentioned
in this specification are herein incorporated by reference in
their entirety and for all purposes to the same extent as if each
individual publication, patent, or patent application was spe-
cifically and individually indicated to be incorporated by
reference.

Such incorporations include U.S. Pat. No. 8,078,849 (in-
ventors: Libby, et al.; issued on Dec. 13, 2011) titled “Fast
execution of branch instruction with multiple conditional
expressions using programmable branch offset table™; U.S.
Pat. No. 7,840,950 (titled Stoodley, et al.; issued on Nov. 23,
2010) titled “Programmatic compiler optimization of glacial
constants”; U.S. Pat. No. 7,840,777 (inventor: Mykland;
issued on Nov. 23, 2010) titled “Method and apparatus for
directing a computational array to execute a plurality of suc-
cessive computational array instructions at runtime”; U.S.
Pat. No. 6,438,737 (inventors: Morelli, et al.; issued on Aug.
20, 2002) titled “Reconfigurable logic for a computer”; U.S.
Pat. No. 7,171,659 (inventors: Becker, et al.; issued on Jan.
30, 2007) titled “System and method for configurable soft-
ware provisioning”; U.S. Pat. No. 7,167,976 (inventor:
Poznanovic, D.; issued on Jan. 23, 2007) titled “Interface for
integrating reconfigurable processors into a general purpose
computing system”; U.S. Pat. No. 7,155,602 (inventor:
Poznanovic, D.; issued on Dec. 26, 2006) titled “Interface for
integrating reconfigurable processors into a general purpose
computing system™; U.S. Pat. No. 7,076,575 (inventor: Bait-
inger, et al.; issued on Jul. 11, 2006) titled “Method and
system for efficient access to remote I/O functions in embed-
ded control environments™; U.S. Pat. No. 6,868,017 (inven-
tor: Ikeda, K.; issued on Mar. 15, 2005) titled “Integrated
circuit device”; and U.S. Pat. No. 6,717,436 (inventors:
Kress, et al.; issued on Apr. 6, 2004) titled “Reconfigurable
gate array”.

Such incorporations further include in U.S. Nonprovi-
sional patent application Ser. No. 13/301,763 filed on Now.

25

30

35

40

45

50

65

4

21, 2011 to inventor Robert Mykland and titled “CONFIG-
URABLE CIRCUIT ARRAY™; US Patent Appn. Publication
Ser. No. 20060004997 (inventor: Mykland, Robert; pub-
lished on Jan. 5, 2006) titled “Method and apparatus for
computing”; US Patent Appn. Publication Ser. No.
20040068329 (inventor: Mykland, Robert; published on Apr.
8, 2004) titled “Method and apparatus for general purpose
computing”; US Patent Appn. Publication Ser. No.
20040019765 (inventor: Klein, Robert C. JR.; published on
Jan. 29, 2004) titled “Pipelined reconfigurable dynamic
instruction set processor’”; and US Patent Appn. Publication
Ser. No. 20040107331 (inventor: Baxter, Michael A.; pub-
lished on Jun. 3, 2004) titled “Meta-address architecture for
parallel, dynamically reconfigurable computing”.

In addition, each and all publications, patents, and patent
applications mentioned in this specification are herein incor-
porated by reference to the same extent in their entirety and
for all purposes as if each individual publication, patent, or
patent application was specifically and individually indicated
to be incorporated by reference. The publications discussed
or mentioned herein are provided solely for their disclosure
prior to the filing date of the present application. Nothing
herein is to be construed as an admission that the present
invention is not entitled to antedate such publication by virtue
of prior invention. Furthermore, the dates of publication pro-
vided herein may differ from the actual publication dates
which may need to be independently confirmed.

BRIEF DESCRIPTION OF THE FIGURES

These, and further features of the invention, may be better
understood with reference to the accompanying specification
and drawings depicting the preferred embodiment, in which:

FIG. 1 is a functional block diagram of a prior art compu-
tational device having a processor module communicatively
coupled with a memory module, a network interface, one or
more input modules and one or more output modules;

FIG. 2 is an information technology network that com-
prises at least one prior art computational device of FIG. 1;

FIG. 3 is a representation of a sequential listing of soft-
ware-encoded, machine-executable instructions that com-
prise or are provided within a selected sequence of a source
software program or a resultant program as disclosed within;

FIG. 4 is a flow chart of certain aspects of the invented
method that a first system software may optionally include
and that are executable by the computer of FIG. 1;

FIG. 5 is a flowchart of additional optional computational
processing executable by the computer of FIG. 1;

FIG. 6 is a flowchart of still additional optional computa-
tional processing executable by the computer of FIG. 1;

FIG. 7 is a flowchart of an embodiment of the invented
method wherein an ordered list of software objects that each
optionally include an opcode into a non-linearly ordered plu-
rality of software objects that are associated to replicate the
process and logic of the ordered list of software objects;

FIG. 8 is a flowchart of an instance of an aspect of the
process of FIG. 7 wherein the logic and flow of a forward
branch logic as expressed by the ordered list of software
objects is replicated by a plurality of non-linearly ordered
software objects;

FIG. 9 is a flowchart of an instance of an aspect of the
process of FIG. 7 wherein the logic and flow of a back branch
logic as expressed by the ordered list of software objects is
replicated by a plurality of non-linearly ordered software
objects; and

US 9,158,544 B2

5

FIG. 10 is a detail illustration of the system memory of
FIG. 1 and illustrating the plurality of constructs of FIG. 1 as
comprising additional software constructs of the method of
FIG. 8 and FIG. 9.

DETAILED DESCRIPTION

It is to be understood that this invention is not limited to
particular aspects of the present invention described, as such
may, of course, vary. It is also to be understood that the
terminology used herein is for the purpose of describing
particular aspects only, and is not intended to be limiting,
since the scope of the present invention will be limited only by
the appended claims.

Methods recited herein may be carried out in any order of
the recited events which is logically possible, as well as the
recited order of events.

Where arange of values is provided herein, it is understood
that each intervening value, to the tenth of the unit of the lower
limit unless the context clearly dictates otherwise, between
the upper and lower limit of that range and any other stated or
intervening value in that stated range, is encompassed within
the invention. The upper and lower limits of these smaller
ranges may independently be included in the smaller ranges
and are also encompassed within the invention, subject to any
specifically excluded limit in the stated range. Where the
stated range includes one or both of the limits ranges exclud-
ing either or both of those included limits are also included in
the invention.

Unless defined otherwise, all technical and scientific terms
used herein have the same meaning as commonly understood
by one of ordinary skill in the art to which this invention
belongs. Although any methods and materials similar or
equivalent to those described herein can also be used in the
practice or testing of the present invention, the methods and
materials are now described.

It must be noted that as used herein and in the appended
claims, the singular forms “a”, “an”, and “the” include plural
referents unless the context clearly dictates otherwise. It is
further noted that the claims may be drafted to exclude any
optional element. As such, this statement is intended to serve
as antecedent basis for use of such exclusive terminology as
“solely,” “only” and the like in connection with the recitation
of claim elements, or use of a “negative” limitation.

FIG. 1 is a functional block diagram of the prior art com-
putational device 2 (hereinafter “computer” 2) having the
processor module 2A communicatively coupled with a
memory module 2B, a network interface 2C, a data input
module 2D, a data output module 2E, and a target circuit T.
The processor module 2A may comprise one or more digital
electronic microprocessors, such as, but not limited to, (a.) a
CORE 17 Extreme Processor™ electronic microprocessor as
marketed by Intel Corporation of Santa Clara, Calif.; (b) a
NEHALEM™ microprocessor as marketed by Intel Corpo-
ration of Santa Clara, Calif’; (c.) a reprogrammable logic unit
as disclosed in U.S. Pat. No. 7,840,777 issued on Nov. 23,
2010 to inventor Robert Mykland and titled “Method and
apparatus for directing a computational array to execute a
plurality of successive computational array instructions at
runtime”; and/or (d.) an other suitable electronic; logic pro-
cessors known in the art having programmable, reprogram-
mable, configurable and/or reconfigurable logic circuitry.
The target circuit T may be or comprise parallel processing
circuitry, configurable logic circuitry, reconfigurable logic
circuitry, and/or reprogrammable logic circuitry.

The computer 2 may be or comprise (a.) an IPHONE™
cellular telephone as marketed by Apple, Inc. of Cupertino;

10

20

25

30

35

40

45

50

55

60

65

6

(b.) an IPAD™ tablet computer adapted for generation of
digitized photographic documents and capable of bi-direc-
tional communications via the telephony network and the
Internet 6 as marketed by Apple, Inc. of Cupertino, Calif.; (c.)
an HTC TITAN II™ cellular telephone as marketed by AT&T,
Inc, of Dallas, Tex. and running a WINDOWS 7™ operating
system as marketed by Microsoft Corporation of Redmond,
Wash.; (d.) a GALAXY NEXUS™ smart phone as marketed
by Samsung Group of Seoul, Republic of Korea and running
an ANDROID™ operating system as marketed by Google,
Inc. of Mountain View, Calif.; (e.) a TOUGHPAD™ tablet
computer as marketed by Panasonic Corporation of Kadoma,
Osaka, Japan and running an ANDROID™ operating system
as marketed by Google, Inc. of Mountain View, Calif.; or (f.)
other suitable computational system or electronic communi-
cations device known in the art.

A bi-directional internal communications bus 2F commu-
nicatively couples and provides electrical power to the pro-
cessor module 2A with the memory module 2B, the network
interface 2C, the data input module 2D, the data output mod-
ules 2E and the target circuit T.

The data input modules 2D may be or comprise a computer
keyboard, a computer mouse, a point and click selection
device, a track ball, a mouse pad, an external disk drive
module, a memory stick and/or other suitable user input or
data input devices known in the art. The data output modules
2E may be or comprise a display device having a display
screen, a touch screen, a portable memory module and/or
other suitable data output devices known in the art.

The network interface 2C is adapted to bi-directionally
communicatively couple the computer 2 with an electronic
communications network 3, such as the Internet, a computer
network and/or a telephony network. It is understood that the
network interface 2C may be adapted to provide wireless
bi-directional communication between the computer 2 and
the electronic communications network 3.

The system memory 2B stores an operating system SW.1,
afirst system software SW.2, a compiler SW.3, an originating
ordered list of software coded instructions L (hereinafter, “the
ordered list” L) comprising a sequence of software coded
machine-executable instructions 4000-4999 SEQ, and a plu-
rality C of constructs C.01-C.N.

The operating system SW.1 directs the operations of com-
puter 2, controlling and scheduling the execution of other
programs, and managing storage, input/output actions, and
communication resources, and may be or comprise a
LINUX™ or UNIX™ or derivative operating system, such as
the DEBIAN™ operating system software as provided by
Software in the Public Interest, Inc. of Indianapolis, Ind.; a
WINDOWS XP™, VISTA™ or WINDOWS 7™ operating
system as marketed by Microsoft Corporation of Redmond,
Wash.; a MAC OS X operating system or iPhone G4 OS™
operating system as marketed by Apple, Inc. of Cupertino,
Calif; or an other suitable operating system known in the art.

The first system software SW.2 provides machine execut-
able instructions to cause and enable the computer 2 to instan-
tiate the aspects of the invented method as disclosed herein.
The ordered list L is an ordered list of software coded instruc-
tions that includes the sequence of software coded machine-
executable instructions 4000-4999 SEQ (hereinafter,
“sequence” SEQ) upon which one or more aspects of the
invented method may be applied by the computer 2 to gener-
ate each of the plurality of resultant software coded constructs
C.01-C.N (hereinafter, “constructs” C.01-C.N), wherein nei-
ther the ordered list L. nor the sequence SEQ include software
instruction that generate overlapping logic branching. It is
understood that the term “source program” as used within the

US 9,158,544 B2

7

present disclosure indicates machine-executable software
code and does not refer to higher-level source code programs
or source programming languages.

FIG. 2 is a schematic diagram of the electronics commu-
nications network 4 (hereinafter “network” 4) that comprises
the computer 2, a reconfigurable computer 6, a database
server 8 and/or the target circuit T. The network 4 is an
information technology network that may additionally com-
prise a telephony network 4A and/or the Internet 4B.

One or more computers 2, reconfigurable computers 6, and
database servers 8 may comprise one or more elements
2A-2E & T or aspects of the computer 2. It is understood that
one or more of the aspects of the invented method may be
executed in singularity, in concert, or in combination by one
or more computer 2, reconfigurable computer 6 and/or data-
base server 8. It is further understood that one or more target
circuits T, reconfigurable computers 6 and/or database serv-
ers 8 may be or comprise (a.) an IPHONE™ cellular tele-
phone as marketed by Apple, Inc. of Cupertino; (b.) an
IPAD™ tablet computer adapted for generation of digitized
photographic documents and capable of bi-directional com-
munications via the telephony network and the Internet 6 as
marketed by Apple, Inc. of Cupertino, Calif; (c.) an HTC
TITAN II™ cellular telephone as marketed by AT&T, Inc. of
Dallas, Tex. and running a WINDOWS 7™ operating system
as marketed by Microsoft Corporation of Redmond, Wash.;
(d.) a GALAXY NEXUS™ smart phone as marketed by
Samsung Group of Seoul, Republic of Korea and running an
ANDROID™ operating system as marketed by Google, Inc.
of Mountain View, Calif.; (e.) a TOUGHPAD™ tablet com-
puter as marketed by Panasonic Corporation of Kadoma,
Osaka, Japan and running an ANDROID™ operating system
as marketed by Google, Inc. of Mountain View, Calif.; or (f.)
other suitable computational system or electronic communi-
cations device known in the art.

The reconfigurable computer 6 may be or comprise a con-
figurable circuit array as disclosed and enabled in Nonprovi-
sional patent application Ser. No. 13/301,763, or other suit-
able configurable, programmable, reconfigurable and/or
reprogrammable processing device or circuit known in the
art.

It is further understood that computer 2, reconfigurable
computer 6 and/or database server 8 may be applied to derive
or generate one or more pluralities C of constructs C.01-C.N
by the application of various aspects of the invented method
from the one or more ordered lists L and opcode sequences
SEQ.

FIG. 3 is a representation of the representative sequence
SEQ that includes a plurality of software-encoded, machine-
executable instructions 4000-4999 SEQ that are comprised
and ordered within the ordered list L. It is understood that
ordered list L. and/or the sequence SEQ may be or comprise a
sequentially ordered listing of associated and software
objects or other software coded instructions.

The executable instructions 4000-4999 SEQ are ordered
for an intended order of sequential execution starting at a first
instruction 4000 and proceeding through the execution of
intervening instructions 4001 through 4998 until the execu-
tion of a last instruction 4999, wherein branch operations can
cause the processor module 2A or target circuit T to not
execute certain instructions 4000-4999 SEQ and/or to repeat-
edly execute certain instructions 4000-4999 SEQ.

It is understood that the term “descending order” is defined
herein to denote executing, instantiating, analyzing, process-
ing or examining the instructions 4000-4999 SEQ in sequen-
tial order starting at the first instruction 4000 and proceeding
to the last instruction 4999.

20

25

35

40

45

50

8

It is also understood that the term “ascending order” is
defined herein to denote executing, instantiating, analyzing,
processing or examining the instructions 4000-4999 SEQ in
sequential order opposite form the intended order of execu-
tion starting at the last instruction 4999 and proceeding to the
first instruction 4000.

Itis further understood that exemplary first forward branch
XFB.1 and exemplary first back branch XBB.1 can be applied
by the computer 2 to direct the processor module 2A to
alternately (a.) skip over and not execute certain instructions;
or (b.) to repeat an execution of certain instructions. For
example, a first exemplary forward branch conditional logical
query XFBI1 of the instruction 4100 directs the processor
module 2A to proceed from executing step 4100 to step 4199
when a logical condition or value of X1 is determined to exist
at the instant execution of step 4100. Logical instructions
4101 to 4199 are thus not executed by the computer 2 when
the processor module 2A finds in an execution of instruction
4100 that a logical condition X1 exists, but rather the com-
puter 2 proceeds to execute instruction 4199, i.e., forward
target label 4199, as a next executed instruction after the
instant execution of step 4100.

The term “forward branch instruction” is defined herein to
denote a software encoded conditional logical query or test
wherein a determination by the executing computer 2 or 4 of
a condition or value directs the computer 2 or the reconfig-
urable computer 4 to proceed from the instant instruction to a
forward target label, e.g., instruction 4199, without executing
all instructions of comprising the ordered list L. or the
sequence SEQ intervening between the instant exemplary
forward branch instruction XFBI1 and an associated exem-
plary forward target label XFT1.

It is further understood that a back branch conditional
logical query or test of the first exemplary back branch
instruction XBBI1 located within instruction 4399 directs the
processor module 2A to proceed from executing back branch
instruction 4399 to executing an instruction 4300 associated
with an exemplary back target label XBT1 when the proces-
sor module 2A finds in an execution of instruction 4399 that
a pre-specified logical condition exists. According to the
exemplary first back branch instruction XBBI1, the processor
module 2A proceeds from instruction 4399 to execute
instruction 4300 when a logical condition Y1 is met in the
execution of instruction 4399 that is associated with the first
back branch instruction XBBI1.

The term “back branch instruction” is defined herein to
denote a software encoded conditional logical query or test
wherein a determination of a condition or value directs the
computer 2 or the reconfigurable computer 4 to proceed from
processing the instant back branch instruction, e.g., instruc-
tion 4399, to next executing a back target label XBT1, e.g., the
back target label XBT1 associated with instruction 4300.

It is still further understood that one or more conditional
logical queries or tests X1 or Y1 may be a negative query or
test, wherein a determination of a nonexistence of a specified
logical condition or value at the time of execution of the
instant branch instruction XFBI.1 & XBBI.1 will lead to a
positive finding of the query or test and thereby result in an
activation of an associated back branch XBB.1 or a forward
branch XFB.1.

The term “back branch instruction” is defined herein to
denote a conditional logical query or test wherein a positive
finding directs the computer 2 or the reconfigurable computer
6 to proceed from an instant back branch instruction, e.g.,
instruction 4399, to a back target label, e.g., instruction 4300,

US 9,158,544 B2

9

wherein the back target label is located previous to the instant
back branch instruction in the instruction sequence of instruc-
tions 4000-4999 SEQ.

It is understood that the terms “target” and “target label” as
used herein indicate software code 4199 & 4300 within the
instruction sequence 4000-4999 SEQ to which a computer 2
or 4 nextreferences or executes after the execution of a branch
instruction 4100 & 4399 as determined by the host computer
20r4.

Referring now to FIG. 4, FIG. 4 is a flow chart of certain
aspects of the invented method that the first system software
SW.2 may optionally include and that are executable by the
computer 2. The ordered list L is selected in step 4.02 and a
counter N is initialized to be equal to the address of a first
instruction 4000 within the sequence SEQ. The processor 2A
then determines in step 4.06 whether the instruction of the
sequence SEQ at the address N within the sequence SEQ is a
conditional forward branch instruction. When the processor
2 A determines in step 4.06 that the instruction of the sequence
SEQ at the address N within the sequence SEQ is a condi-
tional forward branch instruction, the processor 2A proceeds
to step 4.08 and to determine a target instruction of the
sequence SEQ to which the instant conditional forward
branch instruction located at address N conditionally directs
code execution flow. The processor 2A then proceeds for step
4.08 to step 4.10 and to generate a condition construct C.01-
C.N, wherein the condition construct provides an equivalent
logic to the instant forward branch instruction of step 4.08,
wherein a machine-executable instruction and all dependen-
cies of the instant forward branch instruction are replicated by
a combination of logic of the condition construct C.01-C.N
and association of the condition construct C.01-C.N with
other constructs C.01-C.N. The processor 2A proceeds from
step 4.10 to step 4.12 and to examine the value of the counter
N to determine whether the value of the counter N is equal to
the last instruction address 4999 of the sequence SEQ. When
the processor 2A determines in step 4.12 that the value of the
counter N is equal to or greater than the last instruction
address 4999 of the sequence SEQ, the computer 2 proceeds
on to step 4.14 and to perform additional computational
operations. Alternatively, when the processor 2A determines
in step 4.12 that the value of the counter N is not equal to or
greater than the last instruction address 4999 of the sequence
SEQ, the computer 2 proceeds on to step 4.14 to step 4.16 and
to increment the counter N. The processor 2A proceeds from
step 4.16 to an additional execution of step 4.06.

When the processor 2A determines in step 4.06 that the
instruction of the sequence SEQ at the address N within the
sequence SEQ is not a conditional forward branch instruc-
tion, the processor 2A proceeds to step 4.18 and to determine
whether the instruction of the sequence SEQ at the address N
within the sequence SEQ is a conditional back branch instruc-
tion.

When the processor 2A determines in step 4.18 that the
instruction of the sequence SEQ at the address N within the
sequence SEQ is a conditional back branch instruction, the
processor 2A proceeds to step 4.20 and to determine a target
instruction of the sequence SEQ to which the instant back
branch instruction located at address N conditionally directs
code execution flow. The processor 2A then proceeds for step
4.20 to step 4.22 and to generate a loop construct C.01-C.N,
wherein the loop construct provides an equivalent logic to the
instant conditional back branch instruction of step 4.08,
wherein a machine-executable instruction and all dependen-
cies of the instant forward branch instruction are replicated by
a combination of logic of the loop construct C.01-C.N and
association of the condition construct C.01-C.N with other

10

15

20

25

30

35

40

45

50

55

60

65

10

constructs C.01-C.N. The processor 2A proceeds from step
4.22 to step 4.12 and to examine the value of the counter N to
determine whether the value of the counter N is equal to the
last instruction address 4999 of the sequence SEQ.

Alternatively, when the processor 2A determines in step
4.18 that the instruction of the sequence SEQ at the address N
within the sequence SEQ is not a conditional back branch
instruction, the processor 2A proceeds to step 4.24 and to
generate a construct C.01-C.N, wherein the construct pro-
vides an equivalent logic to the instant instruction located at
address N within the sequence SEQ, wherein a machine-
executable instruction and all dependencies of the instant
instruction are replicated by a combination of logic of the
generated construct C.01-C.N and association of the gener-
ated construct C.01-C.N with other constructs C.01-C.N. The
processor 2A proceeds form step 4.24 to step 4.12.

Referring now to FIG. 5, FIG. 5 is a flowchart of additional
optional computational processing executable by the com-
puter 2, wherein in step 5.02 and step 5.04 the computer 2
executes the instructions of step 4.02 through step 4.14. In
optional step 5.06 the plurality of constructs C.01-C.N gen-
erated in steps 4.02 through 4.14 are communicated by elec-
tronic media or by electronic messaging via the network 4 to
an alternate computer 2, reconfigurable computer 6, database
server 8 or target circuit T. The target circuit T is configured in
step 5.08 in accordance with the plurality of constructs C.01-
C.N and the target circuit T is exercised in step 5.10 as
configured in step 5.08. The computer 2 proceeds from step
5.10 on to step 5.12 and to perform additional computational
operations.

Referring now to FIG. 6, FIG. 6 is a flowchart of still
additional optional computational processing executable by
the computer 2, wherein in step 6.02 and step 6.04 the com-
puter 2 executes the instructions of step 4.02 through step
4.14. In optional step 6.06 the plurality of constructs C.01-
C.N generated in steps 4.02 through 4.14 are communicated
by electronic media or by electronic messaging via the net-
work 4 to an alternate computer 2, reconfigurable computer 6,
database server 8 or target circuit T. The compiler SW.3 is
applied to the plurality of constructs C.01-C.N in step 6.08 to
a generate machine-executable code SW.M derived from the
plurality of constructs C.01-C.N, and the machine executable
code SW.M is executed in step 6.10 at least partially by the
target circuit T. The computer 2 proceeds from step 6.10 on to
step 6.12 and to perform additional computational operations.

It is understood that the machine-executable code SW.M
may be expressed in the VERILOG™ programming lan-
guage and that the alternate computer 2, reconfigurable com-
puter 6, database server 8 or target circuit Target circuit may
be or comprise a programmable circuit, such as a VIRTEX-
7™ field programmable gate array as marketed by Xilinx
Corporation of San Jose, Calif., a STRATIX V™ field pro-
grammable gate array as marketed by Altera Corporation of
San Jose, Calif., and/or other suitable programmable devices
known in the art.

As oneillustrative example, the machine code SW.M might
be written in the VERILOG™ software language and in step
6.10 the VERILOG machine code SW.M may be used to
program a VIRTEX-7™ field programmable gate array as
marketed by Xilinx Corporation of San Jose, Calif,, a
STRATIX V™ field programmable gate array as marketed by
Altera Corporation of San Jose, Calif., and/or other suitable
programmable devices known in the art. It is understood that

US 9,158,544 B2

11
logical structure of the VERILOG machine code SW.M may
be reduced to, an embodied within, an applications specific
integrated circuit using the suitable proprietary tools of Xil-
inx Corporation or Altera Corporation, or other suitable ASIC
generation tools known in the art.

Referring now to FIGS. 7, 8, and 9, the ordered list L and
the plurality of constructs C.01-C.N will be discussed and
viewed as software objects for the purposes of illustration of
certain aspects of the invented method. It is understood that
this discussion, analysis and treatment of the ordered list L
and the plurality of constructs C.01-C.N as software objects
in the explanations of FIGS. 7, 8 and 9 are not limiting but are
merely a presentation of a preferred embodiment of the
invented method.

Referring now to FIG. 7, FIG. 7 is a flow chart of an
alternate process executable by the computer 2 and including
one or more aspects of the invented method that optionally
may be employed within a process of a conversion of the
ordered list L into the plurality of constructs C.01-C.N,
wherein the sequence SEQ of the ordered list L is an ordered
list of software objects as directed by the first system software
SW.2 and the complier SW.3 and each of the plurality of
constructs C.01-C.N are software objects. In step 7.02 a next
branch object in descending order within the sequence SEQ is
sought by the processor 2A. At this point in the operation of
the compiler SW.3, all branches are all nested to arbitrary
depth, and conversion from instructions 4000-4999 to con-
structs C.01-C.N is sequentially processed from outermost
nested branch to an innermost nested branch at all points in
the sequence SEQ. Alternatively, the conversions from of
branch instruction of the instructions 4000-4999 can be done
in any order, but after conversions, the condition constructs
C.01-C.Nreferred to herein are resorted so that the conditions
appearing in each of these conditions constructs C.01-C.N is
in order from each outermost condition construct C.01-C.N to
each enclosed innermost condition construct C.01-C.N.

When no further branch instruction, e.g., branch object, of
the order list L is found after the last examined instruction
4000-4998 and the last instruction 4999 of the sequence SEQ,
the processor 2A proceeds on to step 7.04 and to destroy all
unused condition chain segments. Condition chains are struc-

12

into data dependency logic. It is understood that the compiler
SW.3 builds these condition chain structures for each condi-
tion construct C.01-C.N even though particular condition
chains might not be used when an instant condition construct
5 C.01-C.1 does not contain any nested loops or memory opera-
tions; wherein condition chains should be destroyed when
they are not needed. The processor 2A proceeds from step
7.04 to step 7.06 to perform alternate computational process-
0 ing.

An exemplary instance of generating a data dependency
logical statement or equation from an execution dependency
logical statement or statement is now provided. Consider the
following software program written in the C™ programming

15 language:

int main()
{
int x = getchar();
inty = getchar();
int z = getchar();
if(x =="a")
{
putchar('u’);
ifly=="0")

20

25

putchar('v');
if(z=="¢")
putchar('w");
}
30 1
putchar("n');
return O;

}

35
This exemplary C program includes dependencies that are

based upon an execution of a previous command or instruc-
tion of the ordered list of instructions L, i.e., this exemplary C
program exhibits execution dependencies. The compiler

40 SW.3 mightaccept the exemplary C program and generate the
following low level virtual machine byte code:

internal int %main() {

entry:

%tmp = call int (...)* %getchar()
%tmpl = call int (...)* %getchar()
%tmp?2 = call int (...)* %getchar()
%tmp = seteq int %etmp, 97

; <int> [#uses=1]
; <int> [#uses=1]
; <int> [#uses=1]
; <bool> [#uses= 1]

br bool %tmp, label %cond_true, label %cond_next16

cond_true:

%tmp422 = call int %putchar(int 117)
%tmp6 = seteq int %tmpl, 98

; preds = %entry
; <int> [#uses=0]
;<bool> [#uses=1]

br bool %tmp6, label %cond_true7, label %cond_next16

cond_true7:

%tmp821 = call int %putchar(int 118)
%tmp10 = seteq int %tmp2, 99

; preds = %cond_true
; <int> [#uses=0]
;<bool> [#uses=1]

br bool %tmpl0, label %cond_truell, label %cond_next16

cond_truell:

%tmp1220 = call int %putchar(int 119)

; preds = %cond_true7
;<int> [#uses=0]

br label %cond_nextl6

cond_nextl6:
%entry

%tmp1719 = call int %putchar(int 10)

ret int O

; preds = %cond_truell, %cond_true7, %cond_true,

; <int> [#uses=0]

tures built to combine all conditions that affect a predicated
operation of a construct C.01-C.N into a single condition
equation, and thereby transform execution dependency logic

The compiler SW.3 would then derive from the exemplary
LLVM byte code the following exemplary unordered soft-
ware object list of the plurality of constructs C.01-C.N:

65

US 9,158,544 B2

13

1 {/* main */
0{PASSO-{ }{}/**}
1 { TRUNCO0-{0}{}/**}
2{GLOBAL4- {3 }{}/**}
3{GLOBAL4-{4}{}/**}
4 {GLOBAL4-{5}{1/#}
S{IN6-{12}{}/**}
6 {PARAM 42 {5 {17} /% 1%/}
7{PARAMO00{5}{17} /%0 %}
8{PI0-{79}{17}/* %/}
9 {VLOAD1-{68}{17] /*tmp.i*/}
10 { UEXTEND 4- {9 }{ 17 } /*tmp6.i */ }
11 {CONST41{5}{17} %}
12 {AND4- {1011 }{ 17 } /*tmp2.i */ }
13 { CONST40{5}{17} %/}
14 { SETEQ1- {1213 }{ 17 } /*tmp.i*/ }
15 { CHOOSER 1- { 1414 14 }{ 17 } /* #/ }
16{OUT4-{159 {17}/ %}
17{LOOPO-{516}{17}/**/}
18 {PARAM 12 {16 }{}/* 1%/}
19 { VLOAD 1 - { 3 18 }{ } /*tmp4.i */ }
20{IN6-{192}{} /5% }
21 {PARAM 42 {20 1{32} /* 1%/}
22 {PARAM 10{20}{32} * 0%/}
23 {PI0-{2224 {32} /% %}
24 {VLOAD 1 - { 2123 }{ 32} /tmp.i11 %/}
25 { UEXTEND 4 - { 24 }{ 32 } /*tmp6.i12 */ }
26 { CONST41{20}{32}/*#/}
27 { AND 4 - { 25 26}{ 32} /*tmp2.i13 */ }
28 { CONST40 {20 }{32} /*#/}
29 { SETEQ1- {2728 }{ 32 } /Atmp.il4 */ }
30 { CHOOSER 1- { 292020 }{32} /**/]
31{OUT4-{3024}{32}/*%/}
32 {LOOP0-{2031}{32}/**/}
33 {PARAM 12 {31}{}/*1%}
34 {VLOAD 1- {333 }{}/* tmp4a.il6 */ }
35{ING-{342}{} /5%
36 { PARAM 42 {35 {47} /* 1%/}
37 {PARAM 10 {35 }{ 47} /%0 */ }
38 {PI0-{37391{47}/**}
39 { VLOAD 1 - { 3638 }{ 47 } /* tmp.i2 */ }
40 { UEXTEND 4 - { 39 }{ 47 } /* tmp6.i3 */ }
41 {CONST41{35}{47}/*%/}
42 [AND 4- {4041 }{ 47 } /*tmp2.i4*/ }
43 { CONST40{ 35 }{47}/**/}
44 [SETEQ1 - {4243 }{ 47 } /* tmp.i5 */ }
45 { CHOOSER 1- {4444 44 {47} /*%/}
46 {OUT 4- {4539 {47} /**/}
47 {LOOP 0- {3546 1{47}/**/}
48 {PARAM 12 {46 }{}/* 1%/}
49 { VLOAD 1- {348 }{ } /* tmp4.i7 */ }
50 { CONST 197 { }{1/**/}
51 {SETEQ1- {1950 }{ } /* tmp */ }
52 {CONDO- {51 }{}/**}
53 {CONST 1117 { }{52}/**/ }
54 {CVSTORE1-{5345149}{52} /*#/}
55 {CONST 198 { }{52}/*#1
56 { SETEQ1- {3455 }{52 } /* tmp9 */ }
57{AND1-{5651 {52} /%% }
58 {CONDO-{56}{52} /%% 1}
50 { CONST 1 118 { }{ 5852} /%*/}
60 { CVSTORE 1 - {394 5754 }{ 5852} /% %/}
61 { CONST 199 { }{5852} /%% }
62 { SETEQ 1- {49 61 }{ 5852 } /* tmpl4 */ }
63 {AND1- {6257 }{5852} /%% }
64 { CONDO-{621{5852} /%% }
65 { CONST 1119 { }{ 645852} /% #/}
66 { CVSTORE 1 - { 6546360 }{ 645852} /% */}
67 { CHOOSER 0- { 62 66 60 }{ 58 52 } /* */ }
68 { CHOOSER 0- { 56 6754 }{ 52} /* %/}
69 { CHOOSER 0- { 51 6849 }{ } /* */}
70 { CONST 1 10{ }{ } /* */}
71 {VSTORE 1- {70469 }{}/**/}
72 { CONST 40 { }{} /**/}
73 {RETURN4- {7271 }{ } /* #/}

It is understood that the conditional store command on line
54 of the exemplary unordered software object list bears the
same conditional logic as the condition on line 52 (51),

10

15

20

25

30

35

40

45

50

60

65

14

whereas the conditional store command on line 60 of the
exemplary unordered software object list bears the condi-
tional logic of both the condition on line 52 (51) and the
condition on line 58 (56); this is a condition chain. Continuing
the condition chain of the exemplary unordered software
object list, the conditional store on line 66 depends on all
three conditions 51, 56, and 62 being true.

Alternatively, if a branch object of the ordered list L is
found in step 7.02, the processor 2A determines in step 7.08
whether the branch object contains a forward branch instruc-
tion, e.g., a forward branch opcode. When the processor 2A
determines in step 7.08 that the branch object contains a
forward branch instruction, the processor 2A proceeds on to
step 7.10 and to convert the forward branch object into a
condition construct C.01-C.N and to form and populate addi-
tional constructs C.01-C.M as discussed in FIG. 8 and accom-
panying text. Optional details of the procedure of step 7.08 of
forming a condition construct are disclosed in FIG. 8.

The processor 2A proceeds from step 7.10 back to step 7.02
and to seek an additional branch instruction in a further
descending address within the sequence SEQ.

When the processor 2A determines in step 7.08 that the
branch object of the ordered list L does not contain a forward
branch opcode, the processor 2A proceeds on to step 7.12 and
to convert the forward branch object into a loop construct
C.01-C.N and to form and populate additional constructs
C.01-C.N as discussed in FIG. 9 and accompanying text.
Optional details of the procedure of step 7.12 of forming a
condition construct are disclosed in FIG. 9.

The processor 2A proceeds from step 7.12 back to step 7.02
and to seek an additional branch instruction in a descending
position within the sequence SEQ. Alternatively, when the
processor 2A determines in step 7.10 that the instant branch
object does not contain a back branch instruction, the proces-
sor 2A proceeds back to step 7.02.

FIG. 7 is a flowchart of an embodiment of the invented
method wherein an ordered list of software objects L that each
optionally include an opcode 4000-4999 into a non-linearly
ordered plurality of software objects C.01-C.N that are asso-
ciated to replicate the process and logic of the ordered list of
software objects L.

Referring now to FIG. 8, FIG. 8 is a flowchart of an instance
of'an aspect of the process of FIG. 7 of step 7.10 wherein the
logic and flow of a forward branch logic as expressed by the
ordered list of software objects L is replicated by a plurality of
non-linearly associated software objects C.01-C.N.

In an exemplary application of step 7.10, steps 8.02
through 8.18 are applied to the forward branch logic loop of
instructions 4100-4199.

In the step 8.02 the forward branch logic statement “X1?”
of'the exemplary forward branch instruction 4100 is reversed
to a branch logic statement “NOT X1?” In order to convert the
logic of the forward branch instruction 4100 from “condi-
tional area skipped if true” to “conditional area executed if
true” to support predication structures of the plurality of
constructs C.01-C.N that are built to replicate the logic and
flow of the instructions 4100-4199 within the plurality of
constructs C.01-C.N.

Instep 8.04, a forward branch instruction 4100 is converted
into an exemplary condition construct C.02 that is typed as a
CONDITION OBIJECT. The execution of step 8.04 could
optionally or alternatively be anything from (a.) the extremity
of replacing the forward branch instruction 4100 with a soft-
ware object of the condition construct C.02 while retaining
pertinent data from the previous object; to (b.) a milder pro-
cess of changing a property of a more generic opcode object.
For the more extreme conversion cases, any new condition
object might supply an opcode object interface in order to still
be nestable.

US 9,158,544 B2

15

In step 8.06 an ordered list of instructions objects 4101-
4199 owned by the first forward instruction object 4100 of all
opcodes and instruction objects 4100-4199 located inside the
conditional area of instruction objects 4101-4199 is created.
This ordered list of instruction objects 4101-4199 enables the
processor 2A to determine what instructions, e.g., opcode
objects, are affected by the condition construct C.02.

In optional step 8.08 a reference is added with each opcode
instruction 4101-4199 of the conditional area of the forward
branch object 4100, whereby each opcode condition object
4101-4199 is double linked to the forward branch construct
object C.02.

In step 8.10, for each variable modified inside the condi-
tional area of the exemplary condition construct C.02, a
chooser object C.C1-C.CN having a CHOOSER type deno-
tation. Each chooser object C.C1-C.CN that is devoted to a
variable related to the instant forward logic branch loop 4100-
4199 is created and inserted outside the conditional area
construct object C.02.

A condition chain object C.CC1 is created in step 8.12 and
may be associated with the condition construct C.02. Each
logic loop nested directly inside the condition construct C.02
is converted into a conditional loop object C.LL1-C.LLN and the
created conditional loop object C.LL1-C.LN is then connected
to the condition chain object C.CC1 as a condition operand of
each conditional loop object C.LL1-C.LN in step 8.14 refer-
enced by the condition construct C.02.

Each memory operation nested directly inside the condi-
tion construct C.02 is converted in step 8.16 into an analogous
conditional memory operation object C.M1-C.MN and the
condition chain object C.CC1 is connected as the condition
operand of each conditional memory operation object C.M1-
C.MN referenced by the condition construct C.02.

In step 8.18 each function call nested directly inside the
condition construct C.02 is converted into a hierarchical con-
ditional call object C.HC1-C.HCN and the condition chain
object C.CC1 is connected as the condition operand of each
hierarchical conditional call C.HC1-C.HCN referenced by
the condition construct C.02. The processor 2A proceeds
from step 8.18 to step 7.02.

It is understood that the wording “directly inside” means
that there are no intervening conditions between dependency
of the condition chain object C.CC1 and the objects C.M1-
C.MN, C.L1-C.LN & C.HC.1-C.HC N referenced to the con-
dition chain object C.CC1

It is understood that in certain preferred embodiments of
the invented method, steps 8.14, 8.16 and 8,18 can be applied
to each forward branch instruction of the sequence SEQ in
question in any order in the generation of the plurality of
constructs C.01-C.N.

FIG. 9 is a flowchart of an instance of an aspect of the
process of FIG. 7 wherein the logic and flow of a back branch
of instructions 4300-4399 as expressed by the ordered list of
software objects L is replicated by the compiler SW.3 in step
7.12 by the formation and population of a plurality of non-
linearly associated software objects C.01-C.N.

In step 9.02 the exemplary back branch instruction object
4399 is converted into a loop construct object C.03 by denot-
ing the exemplary back branch instruction object 4399 as
being of type LOOP. An associated loop input construct
object C.L1.2 is associated at the back branch target object
4300 in step 9.04, and an associated loop output construct
object C.LO.2 is associated directly in front of the back
branch instruction object 4399. This associated loop output
construct object C.LLO.2 would be inserted in the ordered list
L owned by the function object software construct C.F1. As
with the loop construct object C.03, the loop output construct

30

40

45

50

60

16

object C.LO.2 must be an opcode object or at least have an
opcode object interface. The loop output construct object
C.LO.2 is required if the operation of the resulting code of the
plurality of constructs C.01-C.N is to be correctly simulated
in a data flow simulator in order for data flow in the function
at large to be synchronized with specific appropriate itera-
tions of the loop logic of instructions 4300-4399.

In step 9.08 a loop ordered list construct object C.OL.2
containing the logic of the ordered list of instructions 4300-
4399 owned by the loop construct C.L3 of all opcode objects
inside the instant loop of instructions 4300-4399 is created.
This loop ordered list construct object C.OL.2 would be
inserted in the ordered list of instruction objects 4300-4399
owned by a function object software construct C.F1. The loop
ordered list construct object C.OL.2 enables the processor 2A
to determine which loops affect associated loop construct
object C.03.

Inoptional step 9.10, areference is added with each opcode
instruction object 4300-4398 of the loop area of the back
branch object 4399, whereby each opcode condition object
4303-4199 is double linked to the back branch construct
object C.03.

Instep 9.12, each initial input is threaded to the loop object
construct C.03 through the loop input object C.LI.1. Here
“thread” means add the datum as an operand to the loop input
object C.LI.1 and also as an output from the loop object
construct C.03 and then connect the construct objects C.01-
C.N thatuse this datum to the newly created output of the loop
construct object 4300-4399 rather than the original source
values.

In step 9.14, each final output from the loop construct
object C.03 is threaded through the loop output construct
object C.LO.1. Here “thread” means add the datum as an
operand to the loop output construct object C.LLO.1 and also
as an output from the loop construct object C.03 and then
connect the operations of each construct object C.01-C.N that
use this datum to the newly created output rather than the
original source values.

In step 9.16, for each variable modified and accessed inside
the loop of instructions 4300-4399, a variable construct
object C.V1-C.VN is constructed and is referenced to the
loop construct object C.03. In step 9.18 a default value is
supplied is supplied into each variable construct object C.V1-
C.VN that lacks an initial value.

If the code in the initial sequence SEQ already contains
some variable objects converted from the original opcode list
4000-4999, the processor 2A may convert the appropriate of
these to variable objects in standard form, i.e., initializer first.
Theterm “accessed” term also includes any variable modified
inside a loop conditional area 4300-4398 even if an exem-
plary variable isn’t actually used for anything inside the con-
ditional loop 4300-4398 because a variable value, if modified,
may in fact be needed by a subsequent iteration of the loop
4300-4399 that further modifies the value inside the loop
4300-4399. For example, the following exemplary C function
is offered as illustrative but not limiting example:

int foo(int i, int n, int a, int X)
for(i=0; i> n; i++)

ifla==12)
X=X+1;

printf("x = %d\n", x);
return O;

}

US 9,158,544 B2

17

In a prior art compilers, the variable x is not a loop variable
because it isn’t accessed inside the loop 4300-4399 and only
a final value of the variable x is applied. However, when one
transforms this function into a circuit in accordance with
certain optional aspects of the invented method, a relevant
final value becomes a loop variable because in the stricter
world of data flow, the loop circuit accesses itself to modify
itself. Because the instant included loop logic expressions are
inside a conditional area and inside a loop, to achieve the
correct final result, a loop circuit, i.e., an electronic circuit that
operates in accordance with a loop logic construct C.L1-
C.Ln, requires predication in the form of being maintained as
a loop variable.

Referring now to FIG. 10, FIG. 10 is a detail illustration of
the system memory 2B of FIG. 1 and illustrating the plurality
of constructs C.01-C.N as comprising additional software
constructs C.CC1-C.CCN, C.C1-C.CN, C.L1-C.LN, C.M1-
CMN, CHC1-C.HCN, C.LO1-C.LON, CLI1-CLIN,
C.OL.1-C.OL.N, C.F1-C.FN & C.V1-C.VN. It is understood
that one or more, or all software constructs C.CC1-C.CCN,
C.C1-C.CN, C.L1-C.LN, CM1-CMN, C.HC.1-CHC.N,
CLO.1-CLON, C.LI1-C.LLN, COL.1-C.OLN, C.F1-
C.FN & C.V1-C.VN and each instruction 4000-4999 may be,
comprise, be comprised within, or express a software object.
It is further understood that one or more, or all software
constructs C.CC1-C.CCN, C.C1-C.CN, C.L1-C.LN, C.M1-
C.MN, CHC1-C.HCN, CLO1-C.LON, C.L11-C.LIN,
C.OL.1-COLN, CF1-CFN & C.V1-C.VN and each
instruction 4000-4999 may be, comprise, or express an
opcode and/or an opcode information.

The foregoing disclosures and statements are illustrative
only of the Present Invention, and are not intended to limit or
define the scope of the Present Invention. The above descrip-
tionis intended to be illustrative, and not restrictive. Although
the examples given include many specificities, they are
intended as illustrative of only certain possible configurations
or aspects of the Present Invention. The examples given
should only be interpreted as illustrations of some of the
preferred configurations or aspects of the Present Invention,
and the full scope of the Present Invention should be deter-
mined by the appended claims and their legal equivalents.
Those skilled in the art will appreciate that various adapta-
tions and modifications of the just-described preferred
embodiments can be configured without departing from the
scope and spirit of the Present Invention. Therefore, it is to be
understood that the Present Invention may be practiced other
than as specifically described herein. The scope of the present
invention as disclosed and claimed should, therefore, be
determined with reference to the knowledge of one skilled in
the art and in light of the disclosures presented above.

I claim:

1. A method for forming logic circuits from a software

encoded logic, the method comprising:

a. Selecting an ordered list of instructions having no over-
lapping branch logic;

b. Converting the ordered list of instructions into an unor-
dered plurality of software-encoded logic constructs
(“constructs”), wherein the plurality of constructs
encodes all necessary opcode information and depen-
dency information of the ordered list of instructions; and

c. Applying the plurality of constructs to the design of a
digital logic circuit, whereby an internal connectivity
and a structure of the digital logic circuit are formed to
embody at least some of the opcode information and
dependency information of the software encoded logic.

10

15

20

25

30

35

40

45

50

55

60

65

18

2. The method of claim 1, wherein the dependency infor-
mation embodied by the digital logic circuit includes at least
one data dependency.

3. The method of claim 1, wherein the dependency infor-
mation embodied by the digital logic circuit includes at least
one logic dependency.

4. The method of claim 1, wherein the dependency infor-
mation embodied by the digital logic circuit includes at least
one memory system dependency.

5. The method of claim 1, wherein the opcode information
embodied by the digital logic circuit includes at least one
branch instruction.

6. The method of claim 1, wherein the opcode information
embodied by the digital logic circuit includes at least one
logical loop process.

7. The method of claim 1, wherein the opcode information
embodied by the digital logic circuit includes at least one
logical conditional process.

8. The method of claim 1, wherein the opcode information
embodied by the digital logic circuit includes at least one
component hierarchy.

9. The method of claim 1, wherein at least one opcode
instruction of the opcode information is expressed within a
software object.

10. The method of claim 1, wherein at least one opcode
instruction of the opcode information is expressed within a
construct.

11. A method for programming a computer comprising a
parallel execution logic circuitry, the method comprising:

a. Selecting an ordered list of instructions having no over-

lapping branch logic;

b. Converting the ordered list of instructions into an unor-
dered plurality of software-encoded logic constructs
(“constructs”), wherein the plurality of constructs
encodes all necessary opcode information and depen-
dency information ofthe ordered list of instructions; and

c. Converting the unordered plurality of constructs into a
machine-executable

software program (“machine-
code™); and
d. Operating the computer in accordance with the machine-
code.

12. The method of claim 11, wherein dependency informa-
tion provided in the machine-code includes at least one data
dependency.

13. The method of claim 11, wherein dependency informa-
tion provided in the machine code includes at least one logic
dependency.

14. The method of claim 11, wherein dependency informa-
tion provided in the machine code includes at least one
memory system dependency.

15. The method of claim 11, wherein opcode information
provided in the machine code includes at least one branch
instruction.

16. The method of claim 11, wherein opcode information
provided in the machine code includes at least one logical
loop process.

17. The method of claim 11, wherein opcode provided in
the machine-code includes at least one logical conditional
process.

18. The method of claim 11, wherein opcode information
provided in the machine code includes at least one component
hierarchy.

19. The method of claim 11, wherein at least one opcode
instruction of the opcode information is expressed within a
software object.

US 9,158,544 B2
19

20. The method of claim 11, wherein at least one opcode
instruction of the opcode information is expressed within a
construct.

20

